Unit groups of group algebras of some small groups
نویسندگان
چکیده
منابع مشابه
Small generators for S-unit groups of division algebras
Let k be a number field, suppose that B is a central simple division algebra over k, and choose any maximal order D of B. The object of this paper is to show that the group DS of S-units of B is generated by elements of small height once S contains an explicit finite set of places of k. This generalizes a theorem of H. W. Lenstra, Jr., who proved such a result when B = k. Our height bound is an...
متن کاملPresentations for Unit Groups of Modular Group Algebras of Groups of Order 16
For a p-group G and the field F of p elements, let V denote the group of normalized units of the group algebra F G . Generators and relations are provided for V for each group G of order dividing 16. The presentations are sufficiently concise to permit transcription for machine calculation with V . Some applications are described. A theoretical method for obtaining presentations for V is develo...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولAUTOMORPHISM GROUP OF GROUPS OF ORDER pqr
H"{o}lder in 1893 characterized all groups of order $pqr$ where $p>q>r$ are prime numbers. In this paper, by using new presentations of these groups, we compute their full automorphism group.
متن کاملWreath Products in the Unit Group of Modular Group Algebras of 2-groups of Maximal Class
We study the unit group of the modular group algebra KG, where G is a 2-group of maximal class. We prove that the unit group of KG possesses a section isomorphic to the wreath product of a group of order two with the commutator subgroup of the group G. MSC2000: Primary 16S34, 20C05; Secondary 16U60
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 2014
ISSN: 0011-4642,1572-9141
DOI: 10.1007/s10587-014-0090-0